Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(2)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38437715

RESUMO

Engineered myogenic microtissues derived from human skeletal myoblasts offer unique opportunities for varying skeletal muscle tissue engineering applications, such asin vitrodrug-testing and disease modelling. However, more complex models require the incorporation of vascular structures, which remains to be challenging. In this study, myogenic spheroids were generated using a high-throughput, non-adhesive micropatterned surface. Since monoculture spheroids containing human skeletal myoblasts were unable to remain their integrity, co-culture spheroids combining human skeletal myoblasts and human adipose-derived stem cells were created. When using the optimal ratio, uniform and viable spheroids with enhanced myogenic properties were achieved. Applying a pre-vascularization strategy, through addition of endothelial cells, resulted in the formation of spheroids containing capillary-like networks, lumina and collagen in the extracellular matrix, whilst retaining myogenicity. Moreover, sprouting of endothelial cells from the spheroids when encapsulated in fibrin was allowed. The possibility of spheroids, from different maturation stages, to assemble into a more large construct was proven by doublet fusion experiments. The relevance of using three-dimensional microtissues with tissue-specific microarchitecture and increased complexity, together with the high-throughput generation approach, makes the generated spheroids a suitable tool forin vitrodrug-testing and human disease modeling.


Assuntos
Mioblastos Esqueléticos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Células Endoteliais , Diferenciação Celular , Músculo Esquelético/fisiologia , Esferoides Celulares
2.
Biofabrication ; 16(2)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394679

RESUMO

Decellularized matrices are an attractive choice of scaffold in regenerative medicine as they can provide the necessary extracellular matrix (ECM) components, signals and mechanical properties. Various detergent-based protocols have already been proposed for decellularization of skeletal muscle tissue. However, a proper comparison is difficult due to differences in species, muscle origin and sample sizes. Moreover, a thorough evaluation of the remaining acellular matrix is often lacking. We compared an in-house developed decellularization protocol to four previously published methods in a standardized manner. Porcine skeletal muscle samples with uniform thickness were subjected to in-depth histological, ultrastructural, biochemical and biomechanical analysis. In addition, 2D and three-dimensional cytocompatibility experiments were performed. We found that the decellularization methods had a differential effect on the properties of the resulting acellular matrices. Sodium deoxycholate combined with deoxyribonuclease I was not an effective method for decellularizing thick skeletal muscle tissue. Triton X-100 in combination with trypsin, on the other hand, removed nuclear material but not cytoplasmic proteins at low concentrations. Moreover, it led to significant alterations in the biomechanical properties. Finally, sodium dodecyl sulphate (SDS) seemed most promising, resulting in a drastic decrease in DNA content without major effects on the ECM composition and biomechanical properties. Moreover, cell attachment and metabolic activity were also found to be the highest on samples decellularized with SDS. Through a newly proposed standardized analysis, we provide a comprehensive understanding of the impact of different decellularizing agents on the structure and composition of skeletal muscle. Evaluation of nuclear content as well as ECM composition, biomechanical properties and cell growth are important parameters to assess. SDS comes forward as a detergent with the best balance between all measured parameters and holds the most promise for decellularization of skeletal muscle tissue.


Assuntos
Detergentes , Matriz Extracelular , Animais , Suínos , Detergentes/química , Detergentes/metabolismo , Detergentes/farmacologia , Matriz Extracelular/metabolismo , Octoxinol/química , Octoxinol/metabolismo , Octoxinol/farmacologia , Músculo Esquelético , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/metabolismo , Dodecilsulfato de Sódio/farmacologia , Tecidos Suporte , Engenharia Tecidual/métodos
3.
Invest Ophthalmol Vis Sci ; 64(14): 23, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975851

RESUMO

Purpose: The purpose of this study was to describe the immunoarchitecture of normal extraocular muscles (EOMs) in terms of presence, distribution, and organization of various immune cells. Methods: We performed unilateral orbital exenterations in six fresh human cadavers from elderly patients, followed by dissection of the medial, lateral, superior and inferior rectus, superior and inferior oblique, and superior palpebral levator muscle in their entirety. We further cross sectioned each EOM in an anterior, central, and posterior third. After immunohistochemical staining for CD3, CD8, CD20, CD138, CD68, and podoplanin, quantitative analysis was performed. Results: We found all EOMs (rectus, oblique, and levator muscles) to harbor both T- and B-lymphocytes, with a B-lymphocyte dominance and an absence of plasma cells. The highest prevalence of immune cells was seen in the muscle bellies, with, on average, 488 ± 63 CD3+ T-lymphocytes and 44 ± 110 CD20+ B-lymphocytes per mm2, and significant differences from the anterior (T-lymphocytes) and posterior (T- and B-lymphocytes) thirds. T- and B-lymphocytes were primarily organized in hotspots in the vicinity of blood vessels. In addition, a small resident population of macrophages scattered throughout the specimens was detected. No lymphatic vessels were found in any of the EOMs. Conclusions: These findings can serve as a reference dataset in the assessment of EOM biopsies in the diagnostic process of inflammatory orbital and systemic disorders. Moreover, from a regenerative perspective, our results highlight the importance of taking into account the presence of a resident immune cell population when studying the host immune response on transplanted tissues or engineered constructs.


Assuntos
Linfócitos B , Músculos Oculomotores , Humanos , Idoso , Músculos Oculomotores/patologia , Linfócitos T , Pálpebras , Imageamento por Ressonância Magnética
4.
Pharmaceutics ; 15(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242595

RESUMO

Infection with the rabies virus (RABV) results in a 100% lethal neurological disease once symptoms develop. Post-exposure prophylaxis (PEP) consists of a combination of vaccination and anti-rabies immunoglobulins (RIGs); it is 100% effective if administered early after exposure. Because of its limited availability, alternatives for RIGs are needed. To that end, we evaluated a panel of 33 different lectins for their effect on RABV infection in cell culture. Several lectins, with either mannose or GlcNAc specificity, elicited anti-RABV activity, of which the GlcNAc-specific Urtica dioica agglutinin (UDA) was selected for further studies. UDA was found to prevent the entry of the virus into the host cell. To further assess the potential of UDA, a physiologically relevant RABV infection muscle explant model was developed. Strips of dissected swine skeletal muscle that were kept in a culture medium could be productively infected with the RABV. When the infection of the muscle strips was carried out in the presence of UDA, RABV replication was completely prevented. Thus, we developed a physiologically relevant RABV muscle infection model. UDA (i) may serve as a reference for further studies and (ii) holds promise as a cheap and simple-to-produce alternative for RIGs in PEP.

5.
Mol Neurodegener ; 18(1): 5, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653804

RESUMO

BACKGROUND: Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points. METHODS: In this study, we characterised human induced pluripotent stem cell (hiPSC)-derived astrocytes from FUS-ALS patients, and incorporated these cells into a human motor unit microfluidics model to investigate the astrocytic effect on hiPSC-derived motor neuron network and functional neuromuscular junctions (NMJs) using immunocytochemistry and live-cell recordings. FUS-ALS cocultures were systematically compared to their CRISPR-Cas9 gene-edited isogenic control systems. RESULTS: We observed a dysregulation of astrocyte homeostasis, which resulted in a FUS-ALS-mediated increase in reactivity and secretion of inflammatory cytokines. Upon coculture with motor neurons and myotubes, we detected a cytotoxic effect on motor neuron-neurite outgrowth, NMJ formation and functionality, which was improved or fully rescued by isogenic control astrocytes. We demonstrate that ALS astrocytes have both a gain-of-toxicity and loss-of-support function involving the WNT/ß-catenin pathway, ultimately contributing to the disruption of motor neuron homeostasis, intercellular networks and NMJs. CONCLUSIONS: Our findings shine light on a complex, yet highly important role of astrocytes in ALS, and provides further insight in to their pathological mechanisms.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular , Proteína FUS de Ligação a RNA/fisiologia
6.
Front Bioeng Biotechnol ; 10: 964705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213083

RESUMO

Vascularization of tissue-engineered constructs remains a key challenge in the field of skeletal muscle tissue engineering. One strategy for vascularizing organoids is in vitro pre-vascularization, relying on de novo assembly of undifferentiated endothelial cells into capillaries, a process termed vasculogenesis. In most endothelial cell research to date, human umbilical vein endothelial cells have been used primarily because of their availability. Nevertheless, this endothelial cell type is naturally not occurring in skeletal muscle tissue. Since endothelial cells display a tissue-specific phenotype, it is of interest to use muscle-specific microvascular endothelial cells to study pre-vascularization in skeletal muscle tissue engineering research. Thus far, tissue biopsies had to be processed in two separate protocols to obtain cells from the myogenic and the endothelial compartment. Here, we describe a novel, detailed protocol for the co-isolation of human skeletal muscle microvascular endothelial cells and satellite cell-derived myoblasts. It incorporates an automated mechanical and enzymatic tissue dissociation followed by magnetically activated cell sorting based on a combination of endothelial and skeletal muscle cell markers. Qualitative, quantitative, and functional characterization of the obtained cells is described and demonstrated by representative results. The simultaneous isolation of both cell types from the same donor is advantageous in terms of time efficiency. In addition, it may be the only possible method to isolate both cell types as the amount of tissue biopsy is often limited. The isolation of the two cell types is crucial for further studies to elucidate cell crosstalk in health and disease. Furthermore, the use of muscle-specific microvascular endothelial cells allows a shift towards engineering more physiologically relevant functional tissue, with downstream applications including drug screening and regenerative medicine.

7.
Front Bioeng Biotechnol ; 10: 892287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814025

RESUMO

Skeletal muscle tissue engineering (SMTE) aims at the in vitro generation of 3D skeletal muscle engineered constructs which mimic the native muscle structure and function. Although native skeletal muscle is a highly dynamic tissue, most research approaches still focus on static cell culture methods, while research on stimulation protocols indicates a positive effect, especially on myogenesis. A more mature muscle construct may be needed especially for the potential applications for regenerative medicine purposes, disease or drug disposition models. Most efforts towards dynamic cell or tissue culture methods have been geared towards mechanical or electrical stimulation or a combination of those. In the context of dynamic methods, pulsed electromagnetic field (PEMF) stimulation has been extensively used in bone tissue engineering, but the impact of PEMF on skeletal muscle development is poorly explored. Here, we evaluated the effects of PEMF stimulation on human skeletal muscle cells both in 2D and 3D experiments. First, PEMF was applied on 2D cultures of human myoblasts during differentiation. In 2D, enhanced myogenesis was observed, as evidenced by an increased myotube diameter and fusion index. Second, 2D results were translated towards 3D bioartificial muscles (BAMs). BAMs were subjected to PEMF for varying exposure times, where a 2-h daily stimulation was found to be effective in enhancing 3D myotube formation. Third, applying this protocol for the entire 16-days culture period was compared to a stimulation starting at day 8, once the myotubes were formed. The latter was found to result in significantly higher myotube diameter, fusion index, and increased myosin heavy chain 1 expression. This work shows the potential of electromagnetic stimulation for enhancing myotube formation both in 2D and 3D, warranting its further consideration in dynamic culturing techniques.

8.
Biomaterials ; 283: 121436, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35248912

RESUMO

A wide range of synthetic and natural biomaterials is available for skeletal muscle tissue engineering. One class of natural biomaterials consists of the extracellular matrix (ECM) from donor skeletal muscle. To obtain this ECM, the cellular compartment must be completely removed while retaining the native composition and ultrastructure of the tissue as much as possible. In this review, the progress and challenges in the field of skeletal muscle decellularization are discussed by reviewing the different decellularization methods available and by highlighting the different applications of the scaffolds. Decellularized skeletal muscle has mainly been studied in the context of regeneration with a focus on its tissue-specific morphological features as well as biochemical cues to stimulate muscle regeneration. However, in this review, the potential applications of decellularized skeletal muscle are expanded beyond the regenerative setting to demonstrate its versatility as a biomaterial. Acellular matrices are discussed as a platform to study cell-matrix interactions and drug screening. Decellularized skeletal muscle ECM can also be further processed to re-engineer its structure. An overview is presented of materials processed from decellularized skeletal muscle, ranging from injectable hydrogels, bioinks for 3D bioprinting, electrospun nanofibers to coatings for cell culture.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Matriz Extracelular/química , Músculo Esquelético , Medicina Regenerativa , Engenharia Tecidual/métodos , Tecidos Suporte/química
9.
Methods Mol Biol ; 1889: 169-183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30367414

RESUMO

Skeletal muscle tissue engineering aims at creating functional skeletal muscle in vitro. Human muscle organoids can be used for potential applications in regenerative medicine, but also as an in vitro model for myogenesis or myopathology. However, the thickness of constructs is limited due to passive diffusion of nutrients and oxygen. Introduction of a vascular network in vitro may solve this limitation. Here, we describe tissue engineering of in vitro skeletal muscle consisting of human aligned myofibers with interspersed endothelial networks. To create bio-artificial muscle (BAM), human muscle progenitor cells are cocultured with human umbilical vein endothelial cells (HUVECs) in a fibrin hydrogel. The cell-gel mix is cast into silicone molds with end attachment sites and cultured in endothelial growth medium (EGM-2) for 1 week. The passive forces generated in the contracted hydrogel align the myogenic cells parallel to the long axis of the contracted gel such that they fuse into aligned multinucleated myofibers. This results in the formation of a 2 cm long and ~1.5 mm tick human BAM construct with endothelial networks.


Assuntos
Técnicas de Cocultura , Células Endoteliais/metabolismo , Músculo Esquelético/metabolismo , Engenharia Tecidual , Biópsia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...